

Solutions – SOHCAHTOA (A)

In a right triangle, the opposite side is 10 cm and one of the acute angles $\theta = 38^\circ$. Find the hypotenuse to one decimal place.

16.2 cm

In a right triangle, the opposite side is 9 cm and the adjacent side is 21 cm. Find the size of the acute angle θ to one decimal place.

23.2°

In a right triangle, the hypotenuse is 6 cm and one of the acute angles $\theta = 23^\circ$. Find the adjacent side to one decimal place.

5.5 cm

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 30 cm. Find the size of the acute angle θ to one decimal place.

82.3°

In a right triangle, the hypotenuse is 25 cm and one of the acute angles $\theta = 42^\circ$. Find the opposite side to one decimal place.

16.7 cm

Solutions – SOHCAHTOA (B)

In a right triangle, the adjacent side is 11 cm and the hypotenuse is 16 cm. Find the size of the acute angle θ to one decimal place.

46.6°

In a right triangle, the hypotenuse is 13 cm and one of the acute angles $\theta = 39^\circ$. Find the adjacent side to one decimal place.

10.1 cm

In a right triangle, the adjacent side is 19 cm and one of the acute angles $\theta = 33^\circ$. Find the opposite side to one decimal place.

12.3 cm

In a right triangle, the opposite side is 3 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

17.5°

In a right triangle, the adjacent side is 14 cm and one of the acute angles $\theta = 47^\circ$. Find the opposite side to one decimal place.

15.0 cm

Solutions – SOHCAHTOA (C)

In a right triangle, the adjacent side is 6 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

53.1°

In a right triangle, the hypotenuse is 16 cm and one of the acute angles $\theta = 20^\circ$. Find the adjacent side to one decimal place.

15.0 cm

In a right triangle, the opposite side is 10 cm and one of the acute angles $\theta = 70^\circ$. Find the hypotenuse to one decimal place.

10.6 cm

In a right triangle, the adjacent side is 8 cm and one of the acute angles $\theta = 39^\circ$. Find the opposite side to one decimal place.

6.5 cm

In a right triangle, the opposite side is 10 cm and the adjacent side is 15 cm. Find the size of the acute angle θ to one decimal place.

33.7°

Solutions – SOHCAHTOA (D)

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

66.4°

In a right triangle, the opposite side is 20 cm and the adjacent side is 14 cm. Find the size of the acute angle θ to one decimal place.

55.0°

In a right triangle, the adjacent side is 8 cm and one of the acute angles $\theta = 55^\circ$. Find the opposite side to one decimal place.

11.4 cm

In a right triangle, the adjacent side is 21 cm and one of the acute angles $\theta = 65^\circ$. Find the opposite side to one decimal place.

45.0 cm

In a right triangle, the adjacent side is 6 cm and one of the acute angles $\theta = 64^\circ$. Find the opposite side to one decimal place.

12.3 cm

Solutions – SOHCAHTOA (E)

In a right triangle, the opposite side is 18 cm and the adjacent side is 19 cm. Find the size of the acute angle θ to one decimal place.

43.5°

In a right triangle, the opposite side is 11 cm and the hypotenuse is 14 cm. Find the size of the acute angle θ to one decimal place.

51.8°

In a right triangle, the opposite side is 3 cm and the adjacent side is 15 cm. Find the size of the acute angle θ to one decimal place.

11.3°

In a right triangle, the adjacent side is 7 cm and one of the acute angles $\theta = 40^\circ$. Find the opposite side to one decimal place.

5.9 cm

In a right triangle, the opposite side is 6 cm and one of the acute angles $\theta = 56^\circ$. Find the hypotenuse to one decimal place.

7.2 cm

Solutions – SOHCAHTOA (F)

In a right triangle, the opposite side is 16 cm and the adjacent side is 14 cm. Find the size of the acute angle θ to one decimal place.

48.8°

In a right triangle, the adjacent side is 7 cm and the hypotenuse is 13 cm. Find the size of the acute angle θ to one decimal place.

57.4°

In a right triangle, the adjacent side is 22 cm and one of the acute angles $\theta = 64^\circ$. Find the opposite side to one decimal place.

45.1 cm

In a right triangle, the opposite side is 4 cm and the adjacent side is 6 cm. Find the size of the acute angle θ to one decimal place.

33.7°

In a right triangle, the adjacent side is 15 cm and one of the acute angles $\theta = 58^\circ$. Find the opposite side to one decimal place.

24.0 cm

Solutions – SOHCAHTOA (G)

In a right triangle, the opposite side is 4 cm and one of the acute angles $\theta = 40^\circ$. Find the hypotenuse to one decimal place.

6.2 cm

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 20 cm. Find the size of the acute angle θ to one decimal place.

78.5°

In a right triangle, the hypotenuse is 18 cm and one of the acute angles $\theta = 39^\circ$. Find the adjacent side to one decimal place.

14.0 cm

In a right triangle, the adjacent side is 2 cm and the hypotenuse is 8 cm. Find the size of the acute angle θ to one decimal place.

75.5°

In a right triangle, the adjacent side is 11 cm and the hypotenuse is 30 cm. Find the size of the acute angle θ to one decimal place.

68.5°

Solutions – SOHCAHTOA (H)

In a right triangle, the hypotenuse is 8 cm and one of the acute angles $\theta = 68^\circ$. Find the opposite side to one decimal place.

7.4 cm

In a right triangle, the opposite side is 3 cm and the adjacent side is 23 cm. Find the size of the acute angle θ to one decimal place.

7.4°

In a right triangle, the opposite side is 7 cm and the hypotenuse is 23 cm. Find the size of the acute angle θ to one decimal place.

17.7°

In a right triangle, the opposite side is 11 cm and one of the acute angles $\theta = 24^\circ$. Find the hypotenuse to one decimal place.

27.0 cm

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 9 cm. Find the size of the acute angle θ to one decimal place.

63.6°

Solutions – SOHCAHTOA (I)

In a right triangle, the hypotenuse is 23 cm and one of the acute angles $\theta = 32^\circ$. Find the opposite side to one decimal place.

12.2 cm

In a right triangle, the opposite side is 8 cm and the adjacent side is 19 cm. Find the size of the acute angle θ to one decimal place.

22.8°

In a right triangle, the opposite side is 17 cm and the adjacent side is 9 cm. Find the size of the acute angle θ to one decimal place.

62.1°

In a right triangle, the opposite side is 9 cm and the hypotenuse is 13 cm. Find the size of the acute angle θ to one decimal place.

43.8°

In a right triangle, the hypotenuse is 17 cm and one of the acute angles $\theta = 23^\circ$. Find the adjacent side to one decimal place.

15.6 cm

Solutions – SOHCAHTOA (J)

In a right triangle, the hypotenuse is 8 cm and one of the acute angles $\theta = 25^\circ$. Find the opposite side to one decimal place.

3.4 cm

In a right triangle, the adjacent side is 14 cm and the hypotenuse is 22 cm. Find the size of the acute angle θ to one decimal place.

50.5°

In a right triangle, the opposite side is 2 cm and the hypotenuse is 9 cm. Find the size of the acute angle θ to one decimal place.

12.8°

In a right triangle, the hypotenuse is 11 cm and one of the acute angles $\theta = 59^\circ$. Find the adjacent side to one decimal place.

5.7 cm

In a right triangle, the adjacent side is 15 cm and one of the acute angles $\theta = 62^\circ$. Find the opposite side to one decimal place.

28.2 cm