

SOHCAHTOA (A)

In a right triangle, the opposite side is 10 cm and one of the acute angles $\theta = 38^\circ$. Find the hypotenuse to one decimal place.

In a right triangle, the opposite side is 9 cm and the adjacent side is 21 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 6 cm and one of the acute angles $\theta = 23^\circ$. Find the adjacent side to one decimal place.

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 30 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 25 cm and one of the acute angles $\theta = 42^\circ$. Find the opposite side to one decimal place.

SOHCAHTOA (B)

In a right triangle, the adjacent side is 11 cm and the hypotenuse is 16 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 13 cm and one of the acute angles $\theta = 39^\circ$. Find the adjacent side to one decimal place.

In a right triangle, the adjacent side is 19 cm and one of the acute angles $\theta = 33^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 3 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 14 cm and one of the acute angles $\theta = 47^\circ$. Find the opposite side to one decimal place.

SOHCAHTOA (C)

In a right triangle, the adjacent side is 6 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 16 cm and one of the acute angles $\theta = 20^\circ$. Find the adjacent side to one decimal place.

In a right triangle, the opposite side is 10 cm and one of the acute angles $\theta = 70^\circ$. Find the hypotenuse to one decimal place.

In a right triangle, the adjacent side is 8 cm and one of the acute angles $\theta = 39^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 10 cm and the adjacent side is 15 cm. Find the size of the acute angle θ to one decimal place.

SOHCAHTOA (D)

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 10 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 20 cm and the adjacent side is 14 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 8 cm and one of the acute angles $\theta = 55^\circ$. Find the opposite side to one decimal place.

In a right triangle, the adjacent side is 21 cm and one of the acute angles $\theta = 65^\circ$. Find the opposite side to one decimal place.

In a right triangle, the adjacent side is 6 cm and one of the acute angles $\theta = 64^\circ$. Find the opposite side to one decimal place.

SOHCAHTOA (E)

In a right triangle, the opposite side is 18 cm and the adjacent side is 19 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 11 cm and the hypotenuse is 14 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 3 cm and the adjacent side is 15 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 7 cm and one of the acute angles $\theta = 40^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 6 cm and one of the acute angles $\theta = 56^\circ$. Find the hypotenuse to one decimal place.

SOHCAHTOA (F)

In a right triangle, the opposite side is 16 cm and the adjacent side is 14 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 7 cm and the hypotenuse is 13 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 22 cm and one of the acute angles $\theta = 64^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 4 cm and the adjacent side is 6 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 15 cm and one of the acute angles $\theta = 58^\circ$. Find the opposite side to one decimal place.

SOHCAHTOA (G)

In a right triangle, the opposite side is 4 cm and one of the acute angles $\theta = 40^\circ$. Find the hypotenuse to one decimal place.

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 20 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 18 cm and one of the acute angles $\theta = 39^\circ$. Find the adjacent side to one decimal place.

In a right triangle, the adjacent side is 2 cm and the hypotenuse is 8 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the adjacent side is 11 cm and the hypotenuse is 30 cm. Find the size of the acute angle θ to one decimal place.

SOHCAHTOA (H)

In a right triangle, the hypotenuse is 8 cm and one of the acute angles $\theta = 68^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 3 cm and the adjacent side is 23 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 7 cm and the hypotenuse is 23 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 11 cm and one of the acute angles $\theta = 24^\circ$. Find the hypotenuse to one decimal place.

In a right triangle, the adjacent side is 4 cm and the hypotenuse is 9 cm. Find the size of the acute angle θ to one decimal place.

SOHCAHTOA (I)

In a right triangle, the hypotenuse is 23 cm and one of the acute angles $\theta = 32^\circ$. Find the opposite side to one decimal place.

In a right triangle, the opposite side is 8 cm and the adjacent side is 19 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 17 cm and the adjacent side is 9 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 9 cm and the hypotenuse is 13 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 17 cm and one of the acute angles $\theta = 23^\circ$. Find the adjacent side to one decimal place.

SOHCAHTOA (J)

In a right triangle, the hypotenuse is 8 cm and one of the acute angles $\theta = 25^\circ$. Find the opposite side to one decimal place.

In a right triangle, the adjacent side is 14 cm and the hypotenuse is 22 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the opposite side is 2 cm and the hypotenuse is 9 cm. Find the size of the acute angle θ to one decimal place.

In a right triangle, the hypotenuse is 11 cm and one of the acute angles $\theta = 59^\circ$. Find the adjacent side to one decimal place.

In a right triangle, the adjacent side is 15 cm and one of the acute angles $\theta = 62^\circ$. Find the opposite side to one decimal place.