

Pythagoras' Theorem (A)

In a right triangle, the hypotenuse is 28 cm and one of the shorter sides is 19 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the hypotenuse is 28 cm and one of the shorter sides is 21 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 7 cm and 8 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 3 cm and 14 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 3 cm and 13 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (B)

In a right triangle, the two shorter sides are 5 cm and 4 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 3 cm and 6 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 24 cm and one of the shorter sides is 23 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 15 cm and 19 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 25 cm and one of the shorter sides is 7 cm. Find the length of the other shorter side to one decimal place.

Pythagoras' Theorem (C)

In a right triangle, the two shorter sides are 20 cm and 12 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 27 cm and one of the shorter sides is 9 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the hypotenuse is 19 cm and one of the shorter sides is 7 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 11 cm and 15 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 7 cm and 9 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (D)

In a right triangle, the two shorter sides are 19 cm and 20 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 16 cm and 20 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 12 cm and one of the shorter sides is 11 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the hypotenuse is 25 cm and one of the shorter sides is 23 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 14 cm and 9 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (E)

In a right triangle, the two shorter sides are 16 cm and 12 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 6 cm and 15 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 8 cm and 5 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 25 cm and one of the shorter sides is 3 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the hypotenuse is 24 cm and one of the shorter sides is 17 cm. Find the length of the other shorter side to one decimal place.

Pythagoras' Theorem (F)

In a right triangle, the hypotenuse is 21 cm and one of the shorter sides is 8 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 13 cm and 5 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 24 cm and one of the shorter sides is 7 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 11 cm and 3 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 6 cm and 16 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (G)

In a right triangle, the hypotenuse is 20 cm and one of the shorter sides is 16 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 10 cm and 16 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 18 cm and 15 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 28 cm and one of the shorter sides is 10 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 7 cm and 18 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (H)

In a right triangle, the hypotenuse is 24 cm and one of the shorter sides is 16 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the hypotenuse is 14 cm and one of the shorter sides is 9 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 18 cm and 14 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 5 cm and 15 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 9 cm and 20 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (I)

In a right triangle, the hypotenuse is 28 cm and one of the shorter sides is 22 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 11 cm and 7 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 16 cm and one of the shorter sides is 14 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 14 cm and 7 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 13 cm and 4 cm. Find the length of the hypotenuse to one decimal place.

Pythagoras' Theorem (J)

In a right triangle, the hypotenuse is 17 cm and one of the shorter sides is 8 cm. Find the length of the other shorter side to one decimal place.

In a right triangle, the two shorter sides are 15 cm and 13 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 6 cm and 7 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the two shorter sides are 8 cm and 10 cm. Find the length of the hypotenuse to one decimal place.

In a right triangle, the hypotenuse is 10 cm and one of the shorter sides is 7 cm. Find the length of the other shorter side to one decimal place.